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Abstract

A common approach to study the structure of a graph or a network, G,
is through the analysis of the spectrum of linear operators on the vector
space of functions on it. In this project, we are interested in quantum
graphs, where vertices are connected by length-parametrized edges, to-
gether with the self-adjoint Neumann-Kirchhoff Laplacian. Following the
ideas of Kottos and Smilansky, we explore the spectrum of this operator
using a scattering matrix approach in some specific examples, particu-
larly, the cycles, the line segments and the star graphs. We notice that
in star graphs where edges are not rationally related, we have a truly in-
finite spectrum whereas when edges are rationally related, the spectrum
has some sort of periodicity. We also propose the idea of Cayley metric
graph in order to understand the infinite multiplicity in the case where
the corresponding combinatorial graph of the quantum graph is Cayley.

1 Introduction

A widely used approach to explore the structure of a graph G, is via the anal-
ysis of the spectrum, the set of all eigenvalues, of linear operators on the vector
space of functions on G. For combinatorial graphs, one mostly consider the spec-
trum of the adjacency matrix, or the closely related combinatorial Laplacian.
In this project, we are concerned with metric graphs, which are 1-dimensional
structures where vertices, or nodes, are connected by length-parametrized edges.
In this context, a natural self-adjoint operator arises, which is the Neumann-
Kirchhoff Laplacian. A metric graph, together with the Laplacian, defines a
quantum graph. Following the ideas of Kottos and Smilansky (1), we explore
the spectrum of this operator using a scattering matrix approach.
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The motivating example is as follows. Consider the simplest metric graph
where there are only two vertices jointed by an single edge. Then the infi-
nite spectrum of the Laplacian operator on the metric graph obtained by the
scattering matrix approach will just be an infinite copy of the spectrum of the
corresponding combinatorial graph related in a close way, though not exactly
the same. In other words, each eigenvalue of the corresponding combinatorial
graph, will have an infinite multiplicity in the infinite spectrum of the Laplacian
operator on the metric graph. Following this observation, it is natural for one
to ask if we can generalize this relationship and what properties lead to the
infinite multiplicity. In order to answer these questions, we introduce the idea
of Cayley metric graph at the end of this paper. This paper is organized as the
following: Section 2 discusses some of the issues related to self-adjoint operators
in infinite dimensional cases. Section 3 talks about the mathematical set up of
this project. In particular, the idea of using quantum graphs and a scattering
matrix approach to obtain the spectrum of the graph in Kottos and Smilansky.
Section 4 are specific examples of quantum graphs of our interests. Namely, the
cycles, the line segments, and the star graphs. Section 5 provides the statistical
description of some star graphs, which are widely studied in quantum graph
literature. Section 6 discusses further directions of this project. In particular,
we propose the idea of a Cayley metric graph by combining the ideas of different
kinds of graphs together.

2 Self-Adjoint Operators

2.1 Problems for Self-adjoint Operators in Infinite Dimen-
sion

This section will discuss some of the problems of self-adjoint operators that
arise in the infinite dimensional cases, following the ideas in (2). Recall the stan-
dard spetral theory in linear algebra that if A is a self-adjoint n×n matrix,then
there exists an orthonormal basis {vj}nj=1 for Cn and real numbers λ1, ..., λn
such that Avj = λjvj . We may state the result equivalently in basis-independent
language as follows. Suppose H is a finite-dimensional Hilbert space and A is
a self-adjoint linear operator on H, meaning that 〈φ,Aψ〉 = 〈Aφ,ψ〉 for all
φ, ψ ∈ H. Then there exists an orthonormal basis of H consisting of eigenvec-
tors for A with real eigenvalues.

Since there is a standard notion of orthonormal bases for general Hilbert
spaces, one might hope that a similar result would hold for self-adjoint operators
on infinite-dimensional Hilbert spaces. However, there are simple examples
showing that a self-adjoint operator may not have any eigenvectors. Consider
the following example. Let H = L2([0, 1]) and an operator A on H defined by

(Aψ)(x) = xψ(x).

Then A is a self-adjoint operator on H, but A has no eigenvectors. This is
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because if xψ(x) = λψ(x), then ψ would have to be supported on the set where
x = λ, which is a measure zero set. Therefore, only the zero element of L2([0, 1])
satisfies Aψ = λψ.

At the same time, there is another serious problem with self-adjoint operators
in the infinite-dimensional case. In quantum mechanics, most of the self-adjoint
operators A are unbounded operators, which means that there is no constant C
such that ‖Aψ‖ ≤ C‖ψ‖ for all ψ. For example, let X be the position operator
on L2(R) such that (Xψ)(x) = xψ(x). Let 1E denote the indicator function of
set E. then we have:

‖X1[n,n+1]‖ ≥ ‖1[n,n+1]‖

for all n ∈ N. Hence X cannot be bounded. However, it can be shown that
if a self-adjoint operator A is defined on all of H, then A must be bounded.
Therefore, if A is self-adjoint and unbounded, it cannot be defined on all of H.
As a result, we define an “unbounded operator on H” to be a linear operator
from a dense subspace of H, known as the domain of A, to H. However, the
notion of self-adjointness for such an operator is more complicated than in the
bounded case. That is to say, the obvious requirement, 〈φ,Aψ〉 = 〈Aφ,ψ〉 for all
φ, ψ in the domain of A, is not the “correct” condition. In particular, it is not
sufficient to guarantee the spectral theorem for A. Instead, we will define the
adjoint A∗ of any unbounded operator A, to be an unbounded operator with its
own domain. Then an unbounded operator is called self-adjoint, if the domains
of A and A∗ are the same and A and A∗ agree on their common domain. In
other word, being self-adjoint not only means that A and A∗ agree whenever
they are both defined, but also that the domains of A and A∗ agree.

2.2 Unbounded Self-Adjoint Operators

In quantum mechanics, most of the operators, including those describing
position, momentum, and energy, are not defined on the whole corresponding
Hilbert space, but only on a dense subspace of it. In the case of the position
operator as mentioned above, given ψ ∈ L2(R), the function Xψ(x) = xψ(x)
could easily go wrong and fail to be in L2(R). Nonetheless, the space of functions
ψ’s in L2(R) for which xψ(x) is again in L2(R) is a dense subspace in L2(R).
A common property of these operators is that they are not bounded, meaning
that there is not constant C such that

‖Aψ‖ ≤ C‖ψ‖

for all ψ for which the operators A are defined. Because of the operators are not
bounded, we cannot use the bounded linear transformation theorem to extend
them to the whole Hilbert space. In this section, we will discuss the “appro-
priate” notion of self-adjointness for unbounded operators, as discussed above,
for which the spectral theorem will hold. As we have already mentioned, the
natural candidate for a definition of being self-adjoint, 〈φ,Aψ〉 = 〈Aφ,ψ〉 for all
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φ, ψ in the domain of A, is not the right one. For any unbounded operator A,
we have to define another unbounded operator A∗, called the adjoint of A on
its own naturally defined domain. Then A is defined to be self-adjoint if A and
A∗ are the same operators with the same domain.

Let us give the precise definition of an unbounded self-adjoint operator, to-
gether with conditions for self-adjointness. An unbounded operator A on H is a
linear map of some dense subspace, or namely, the domain of A, Dom(A) ⊆ H
into H. In fact, as “unbounded” implies “not necessarily bounded,” we permit
the case in which Dom(A) = H and thus A is bounded.Consider the following
two cases:

1. If A is bounded, for any φ,the linear functional 〈φ,A·〉 is also bounded.
Then by Riesz Theorem, there is a unique χ such that

〈φ,A·〉 = 〈χ, ·〉

Define the adjoint A∗ of A by setting A∗φ = χ.

2. If A is unbounded instead, 〈φ,A·〉 is not necessarily bounded, but might
still be bounded for some vectors φ. If 〈φ,A·〉 happens to be bounded for some
φ ∈ H, then the bounded linear transformation theorem guarantees that this
linear functional has a unique bounded extension from Dom(A) to all of H. Then
again, the Riesz theorem implies that there is a unique χ such that this linear
functional is a “inner product with χ.” This reasoning leads to the following
definition:

Definition 2.1. Let A be an operator defined on a dense subspace Dom(A) ⊆
H. Let Dom(A∗) be the space of all φ ∈ H for which the linear functional

ψ 7→ 〈φ,Aψ〉, ψ ∈ Dom(A)

is bounded. Then for φ ∈ Dom(A∗), define A∗φ to be the unique vector such
that 〈φ,Aψ〉 = 〈A∗φ, ψ〉 for all ψ ∈ Dom(A).

Note that 〈φ,A·〉 is bounded means that there exists a constant C such that
|〈φ,Aψ〉| ≤ ‖ψ‖ for all ψ ∈ Dom(A). The operator A∗ is linear in its domain,
and we call it the adjoint of A.

There is another way to think about the definition of A∗. Let φ be a vector,
if there exists another vector χ such that 〈φ,Aψ〉 = 〈χ, ψ〉 for all ψ ∈ Dom(A),
then we say φ ∈ Dom(A∗) and A∗φ = χ. Once again, by Riesz theorem, such a
χ exists if and only if 〈φ,A·〉 is bounded, meaning that the two ways of thinking
about the adjoint A∗ are equivalent.

It is worth mentioning that given an operator A defined on a dense subspace,
its adjoint A∗ does not necessarily have to be densely defined. However, this
situation is not a usual problem for operators of interests in practice.
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Definition 2.2. An unbounded operator A on H is symmetric if

〈φ,Aψ〉 = 〈Aφ,ψ〉

for all φ, ψ ∈ Dom(A).

If A is symmetric, then A∗ is seen as an extension of A in the following sense:

Definition 2.3. An unbounded operator A is called an extension of an un-
bounded operator B if

1.Dom(B) ⊆ Dom(A)

2.A = B on Dom(B)

Proposition 2.1. An unbounded operator A is symmetric if and only if A∗ is
an extension of A.

Proof. Given A is symmetric, for all φ ∈ Dom(A), we get that

|〈φ,Aψ〉| ≤ ‖Aφ‖‖ψ‖

by Cauchy-Schwarz inequality, meaning that φ ∈ Dom(A∗). In this case, the
unique vector A∗φ for which 〈φ,Aψ〉 = 〈A∗φ, ψ〉 is just Aφ. Hence A and A∗

agrees on Dom(A).

In terms of the backward direction, given A∗ is an extension of A, for all φ ∈
Dom(A), we have:

〈φ,Aψ〉 = 〈A∗φ, ψ〉 = 〈Aφ,ψ〉
for all ψ ∈ Dom(A), which means that A is symmetric.

Definition 2.4. An unbounded operator A on H is self-adjoint if

1.Dom(A) = Dom(A∗)

2.A∗φ = Aφ for all φ ∈ Dom(A)

Equivalently,we can say that an operator A is self-adjoint if A∗ equals A,
given that the equality of unbounded operators has to include the equality of
domains. As Proposition 2.1 suggests, every self-adjoint operator is symmetric,
but the opposite direction is not true. There are many symmetric operators
that are not self-adjoint, as a symmetric operator is self-adjoint if and only if
Dom (A) = Dom(A∗). In practice, it is sometimes difficult to show that D(A∗)
is not larger than D(A).

3 Quantum Graphs and Scattering Approach

This section will introduce some background mathematics which motivate
this project, following the ideas in (3). The first part introduces the set up of
examples in the beginning section. Namely, the metric graph, the Neumann-
Kirchhoff Laplacian, and the use of scattering matrix approach to calculate the
spectrum of the graph. The second part introduces the two kinds of graphs of
general interests, Cayley graph and homogeneous graph.
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3.1 Metric graph, Neumann-Kirchhoff Laplacian and scat-
tering matrix approach

3.1.1 Metric graph and Neumann-Kirchhoff Laplacian

In this section, we introduce the main players of the quantum graph theory:
metric graphs and differential operators on them. A graph consists of a set of
points called vertices and a set of segments connecting some of the vertices,
which are called edges. In combinatorial graphs, vertices are the main players
and the edges merely indicate some relations between them. In contrast, in
metric graphs, we focus our attention on the edges. They act no longer just as
abstract relations between vertices, but rather as physical “wires” connecting
them. Quantum graphs are essentially metric graphs equipped with differential
operators. The main operator under consideration acts as the second derivative
along the edges with certain conditions at vertices. In fact, these conditions
generalize the boundary conditions for ODEs, hence we will discuss what are
the “appropriate” conditions.

Moreover, one should be aware that the points of a metric graph G are not
only its vertices, but also all intermediate points x on the edges as well. Hence
when we consider functions on it, we consider them as defined along the edges,
rather than just at the vertices, as in the combinatorial cases. In particular, one
can talk about continuous functions and define the standard space of continuous
functions on the metric graph. The presence of the cooridnate x along the edges
makes it possible for one to define the Lebesgue measure dx on the graph in
a natural way. Having this measure, one can then define some other standard
function spaces on the graph. Let Hk(e) denote the standard Sobolev space of
functions on the edge e that have all their distributional derivatives up to the
order k in L2(e).

Definition 3.1. The Sobolev space H1(G) consists of all continuous functions
on G that belong to H1(e) for each edge e such that

‖f‖2H1(G) =
∑
e∈E
‖f‖2H1(e) <∞

The continuity condition imposed on functions in the Solobev space H1(G)
means that any function f from this space has the same value at a vertex v
on all edges adjacent to v, and therefore, its value f(v) at v is well-defined.
In fact, this is a natural condition for one-dimensional H1-functions, which are
continuous in the standard one-dimensional setting.

However, on the other hand, there seems to be no natural definition of
higher-order Solobev spaces Hk(G), where k is greater than 1. The reason is
that, unlike in the one-dimensional case, there are no natural conditions that
functions should satisfy at vertices. In fact, such vertex conditions will depend
on a particular Hamiltonian studied. Hence one will often start with spaces
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where smoothness is enforced only along edges, without any junction conditions
at vertices at all.

Let’s formally define a metric graph: a metric graph G includes a set of
vertices V ⊆ G, where G\V is a union of finitely many open intervals. Let E be
a set of oriented edges. For every e ∈ E , denote L(e) as the length of the edge.
Specifically, We will call a metric graph infinite if it has infinitely many vertices,
or equivalently, infinitely many edges. Otherwise, the graph is called finite, and
a finite graph whose edges all have finite lengths is called compact. For the sake
of our purpose, we mainly consider the case of compact graphs, which are also
compact as topological space. We define two smooth functions:

e : [0, L(e)]→ G

ē : [0, L(e)]→ G
namely, the same edge as e, but parametrized in the opposite direction by

ē(t) = e(L(e)− t)

We assume that E is symmetric, which means that ē ∈ E whenever e ∈ E .
We also assume that there is no multiple edges with the same end points. Then
for every v1, v2 ∈ V, e, e

′ ∈ E , define the adjacency matrices of the vertices and
edges respectively as

c(v1, v2) = c(v2, v1) =

{
1 ∃e ∈ E : e(0) = v1, ē(0) = v2

0 otherwise

c(e, e′) = c(e′, e) =

{
1 e(0) = e′(0)

0 otherwise

Once we have a metric graph G, it becomes a quantum one after being
equipped with an additional structure: assignment of a differential , or some-
times more general, operator on G. This operator is often called the Hamiltonian
in physics. In most cases, though not always, the Hamiltonian is required to be
self-adjoint. When studying quantum graphs, the most commonly used operator
is the negative second derivative acting on each edge:

f(x) 7→ −
(

d2f

dx2

)
where x is the coordinate x along an edge.

Another very commonly used operator is a general Schrödinger operator:

f(x) 7→ −
(

d2f

dx2

)
+ V (x)f(x)
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where V (x) is an electric potential.

For both of the two above operators, the direction of the edge is irrelevant.
This will not be the case if one wants to include first order derivative terms,
for example, like magnetic potentials, or to consider first order operators like
df

dx
. In such cases, one need to assume the graph to be directed and consider

directed edges b and coordinates xb in the correponding direction. For instance,
the magnetic Schrödinger operator can be defined as:

f(xb) 7→ (
1

i

d

dxb
−Ab(xb))

2f(xb) + V (xb)f(xb)

where V is the electric potential and A is the magnetic potential. Note that A
is an one-dimensional vector field, which is to say that it changes sign when the
direction of the oriented edge is reversed: Ab(xb) = −Ab̂(xb̂), where b̂ denotes
the edge coordinate parametrized in the opposite direction, i.e. xb̂ = Lb − xb.

The discussion about the domains of self-adjoint operators makes it clear
that the definition of the quantum graph Hamiltonian is not complete until the
domain is specified. The classical case of differential operators on a graph with
only one edge suggests that the domain description should involve smoothness
conditions along the edge and some boundary conditions at the vertices, analo-
gous to the boundary conditions for a single interval. Moreover, the requirement
of being self-adjoint will impose additional restrictions on the vertex conditions.

Definition 3.2. Quantum graph is a metric graph equipped with a Hamilto-
nian H with “appropriate” vertex conditions. In other words, a quantum graph
Γ is a triple: (metric graph G, Hamiltonian H, vertex conditions).

In order to make the definition of the Hamiltonian operator complete, we
need to describe its domain. Assuming that H acts as the negative second order
derivative operator, it is natural to require a function f belongs to the Sobolev
space H2(e) on each edge e. Consider the second derivative operator defined on
the direct sum ⊕e∈EC

∞
0 (e) of the spaces of smooth functions on edges vanishing

with all their derivatives at the vertices. By squeezing the functions to a shorter
segment than e and then modify them to make them infinitely differentiable,
we get that the closure of the operator in L2(Γ) has the domain ⊕e∈EH

2
0 (e),

where H2
0 (e) is the order 2 Sobolev space on the edge e of functions vanishing

with their first derivatives at the ends of the edges. Defined in this way, the
operator is symmetric. Now the remaining task is to find boundary conditions
at the vertices that would produce self-adjoint extensions of this operator.

We employ the most commonly used conditions, which are called Neumann-
Kirchhoff. Let Ψ : G → C and e ∈ E . Define Ψe : [0, L(e)] → C,Ψe(t) =

Ψ(e(t)).Also define Ψ′′(e(t)) = Ψ′′(ē(L(e)−t)) =

(
d2Ψe(t)

dt2

)
t=t0

=

(
d2Ψē(t)

dt2

)
t=L(e)−t0

.
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Then let us define the Neumann-Kirchhoff Laplacian, denoted By ∆. Consider
D = The space of twice differentiable functions on G\V such that all the func-
tions satisfy the following two boundary conditions:

(1. continuity)

lim
t→0

Ψe(s) = Ψ(v),∀v ∈ V,∀e ∈ E such that e(0) = v

(2. current conservation) ∑
e∈E:e(0)=v

Ψ′e(0) = 0,∀v ∈ V

A operator ∆ : Ψ ∈ D → Ψ′′ is the Neumann-Kirchhoff Laplacian. Here, in
the second condition, the sum is taken over the set of all edges e connected to
the vertex v and the derivatives are assumed to be taken in the directions away
from the vertex, which we shall call the outgoing edges.

One important property of the Neumann-Kirchhoff Laplacian is that it is
self-adjoint.

Theorem 3.1. The Neumann-Kirchhoff Laplacian is self-adjoint.

We wish to explore the spectrum of the Laplacian. It consists of eigenvalues
of the operator. An eigenvalue λ of the operator is a real number such that

−Ψ′′ = λΨ

It turns out that λ ≥ 0, so let k2 = λ.

Proposition 3.1. Ψ ∈ D such that −Ψ′′ = λΨ is determined by its values on
the vertices.

Proof. Suppose Ψ : G → C satisfies −Ψ′′ = λΨ and the two boundary condi-
tions. Then ∀e ∈ E,Ψe(t) = a(e)e−ikt + b(e)eikt.

Boundary condition 1 implies that

{
Ψe(0) = Ψ(e(0))

Ψe(L(e)) = Ψ(ē(0))

⇒

{
a+ b = Ψ(e(0))

ae−ikL(e)+ + beikL(e) = Ψ(ē(0))

9



It follows that:{
a = 1

2i sin (kL(e)) (Ψ(e(0))eikL(e) −Ψ(ē(0)))

b = −a+ Ψ(e(0))
Substitute a, b back into the general solution to the differential equation and simplify:

Ψe(t) =
Ψ(e(0)) sin (kL(e)− t) + Ψ(ē(0)) sin (kt)

sin (kL(e))
.

This means that Ψe(t) is determined by the values of Ψ at the endpoints of
e, e(0) and ē(0).

But how to determine the eigenvalues k2? Let us use the second boundary
condition. Using the above expression of Ψe(t), we get that

Ψ′e(0) =
1

sin(kL(e))
[−kΨ(e(0)) cos(kL(e)) + kΨ(ē(0))].

Since ∑
e∈E:e(0)=v

Ψ′e(0) = 0,∀v ∈ V,

plug in the expression for Ψ′e(0) :∑
e∈E:e(0)=v

−Ψ(v) cos(kL(e)) + Ψ(ē(0))

sin(kL(e))
= 0,∀v ∈ V

or ∑
e∈E:e(0)=v

Ψ(ē(0))

sin(kL(e))
= Ψ(v)

∑
e∈E:e(0)=v

cot(kL(e)),∀v ∈ V

Using the definition of the adjacency matrix for vertices, c(v,v’), we can rewrite
the above equation as:∑

v′

c(v, v′)

sin(kL(v, v′))
Ψ(v′)− [

∑
v′

c(v, v′) cot(kL(v, v′))]Ψ(v) = 0,∀v ∈ V,

Then define:

F (v) =
∑

e∈E:e(0)=v cot(kL(e))

G(v, v′) = c(v,v′)
sin(kL(v,v′))

δ(v, v′) =

{
1 v′ = v

0 v′ 6= v

H(k)v,v′ = G(v, v′)− δ(v, v′)F (v)
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Thus a solution Ψ 6= 0 of −Ψ′′ = k2Ψ with the Neumann-Kirchhoff boundary

conditions exists ⇔ ∃Ψv =

Ψ(v1)
· · ·

Ψ(vN )

 = Ψ|v 6= 0 such that H(k)Ψv = 0 (matrix

equation.)

3.1.2 Scattering approach

In this section, we will introduce a matrix S related to the vertices with re-
spect to the scattering process. This matrix is the key to calculate the spectrum
of the graph. Given a graph G, attach one lead/edge to each vertex and denote
the edge attached to v ∈ V by ev : [0,∞)→ Ḡ = G ∪ {leads}. The figure below
is an illustration of the idea.

v1

v2

v3

v4

Let Eint = E denote the original interior edge of G and let Eext denote the
external edges (leads).
Define Ψv

e′(t) = δ(v, v′)e−ikt + S(v, v′)eikt, where e, e′ ∈ Eext, e′(0) = v′. This is
the solution of −Ψ′′ = k2Ψ restricted to e′ = ev′ for the incoming wave along
ev with the wave number k. Schematically:
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v1

v2

v3

v4

ev4

e−ikt

Ψe
v2
v4

Proposition 3.2. S = [iI −H(k)][iI +H(k)]−1

In particular, as H(k) is Hermitian and symmetric, S is unitary and symmetric.

Proof. Apply the two boundary conditions, namely, continuity and current con-
servation, we get that

{
1.Ψv(v′) = δ(v, v′) + S(v, v′) ∀v, v′ ∈ V
2.
∑

e′∈E:e′(0)=v Ψv
ev′ (0) =

∑
e′∈Eint,e′(0)=v′(Ψv

e′)
′(0) + (Ψv

ev′ )
′(0) = 0

∀e′ ∈ Eint, e′(0) = v′ ⇒

{
(Ψv

e′)
′(0) = k

sin(kL(e′)) [−Ψv(v′) cos(kL(e′)) + Ψv(ē′(0))]

(Ψv
ev′ )
′(0) = −ikδ(v, v′) + ikS(v, v′)

Since
∑

e′∈Eint,e′(0)=v′(Ψv
e′)
′(0) + (Ψv

ev′ )
′(0) = 0,

we get:∑
e′∈Eint,e′(0)=v′

−Ψv(v′) cos(kL(e′))+Ψv(ē′(0))
sin(kL(e′)) − iδ(v, v′) + iS(v, v′) = 0

⇒
∑

v′′∈V c(v
′, v′′)−Ψv(v′) cos(kL(v′,v′′))+Ψv(v′′)

sin(kL(v′,v′′)) − iδ(v, v′) + iS(v, v′) = 0

⇒ −F (v′)Ψv(v′) +
∑

v′′∈V G(v′, v′′)Ψv(v′′)− iδ(v, v′) + iS(v, v′) = 0

⇒ [
∑

v′′ H(k)v′,v′′Ψv(v′′)]− iδ(v, v′) + iS(v, v′) = 0

⇒ [
∑

v′′ H(k)v′,v′′(δ(v, v′′) + S(v, v′′))]− iδ(v, v′) + iS(v, v′) = 0

So:∑
v′′∈V H(k)v′,v′′δ(v, v′′)+

∑
v′′∈V H(k)v′,v′′S(v, v′′)−iδ(v, v′)+iS(v, v′) = 0

Notice that:
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∑
v′′∈V H(k)v′,v′′δ(v, v′′) = H(k)v,v′ ,

∑
v′′∈V H(k)v′,v′′S(v, v′′) = (SH(k))v,v′

Therefore, H(k) + SH(k) - iI + iS = 0

⇒ S(H(k) + iI) = iI −H(k)

We conclude that S = [iI- H(k)][iI+H(k)]−1.

Define ζ(k) = det[I − S(k)]. In kottos and Smilansky, they argue that the
graph eigenvalues are the numbers k2 where k are the roots of the function
ζ(k) = 0.

4 Examples

4.1 The Cycles

Following the idea above, we will calculate the eigenvalues of the basic ex-
amples, the cycles of n vertices.

Consider the most basic example, where there is only two vertices v1 and v2

connected by one edge whose length is L.

v1 v2

Then by definition, we have the following:

G = G(v1, v2) =
1

sin(kL)

G(vi, vi) = 0 for i = 1, 2

F = F (v1) = F (v2) = cot(kL)

H(k)vi,vi
= −F for i = 1, 2

H(k)v1,v2
= H(k)v2,v1

= G

So:

H(k) =

(
− cot(kL) 1

sin(kL)
1

sin(kL) − cot(kL)

)
Given:

S(k) = [iI −H(k)][iI +H(k)]−1

plug in everything, we get that:

S(k) = e−ikL
(

0 1
1 0

)
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which is symmetric and unitary.
Then

ζ(k) = det[I − S(k)] = 0 = det(

(
0 1
1 0

)
)−

(
0 e−ikL

e−ikL 0

)
) = 1− e−i2kL

We get that
e−i2kL = 1

k =
π

L
m,m ∈ Z

Hence the eigenvalues of the graph where two vertices are connected by an
interval of length L are

k2 =
π2

L2
m2,m ∈ N

Similarly, we can solve for the spectrum of the following cycles, each edge with
the same length L:

(n = 2)

v1 v2

k =
2m

2L
π,m ∈ N

k2 =
(2m)2

(2L)2
π2,m ∈ N

(n = 3)

v1

v2 v3

k =
2m

3L
π,m ∈ N

k2 =
(2m)2

(3L)2
π2,m ∈ N

(n = 4)

14



v1

v2 v3

v4

k =
2m

4L
π,m ∈ N

k2 =
(2m)2

(4L)2
π2,m ∈ N

(n = 5)

v1

v2

v3 v4

v5

k =
2m

5L
π,m ∈ N

k2 =
(2m)2

(5L)2
π2,m ∈ N

(n = 6)

v1

v2v3

v4

v5 v6

k =
2m

6L
π,m ∈ N

k2 =
(2m)2

(6L)2
π2,m ∈ N
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One quickly notice that if the total lengths of the cycles are the same, namely,
if the total lengths of the cycles are all L, which means each segment is L/n, then
k and k2 will be the same for all the cycles, and they are exactly the ones for
the cycle with only one vertex. This is precisely due to the Neumann-Kirchhoff
boundary conditions. When the boundary conditions hold at a vertex of degree
2, in this cases, at all the vertices, the vertex actually can be eliminated, hence
combining two adjacent edges into one smooth edge. The boundary conditions
exactly guarantee that the adjacent H2 pieces of the function match into a single
H2 function on the resulting longer edge: the continuity condition ensures the
natural continuity and the current conservation condition ensures the continuity
of the first derivative.

4.2 Line Segments with Different Numbers of Nodes

Given the observation above, we should also consider the example where we
start with a single line segment with two vertices at the ends, and keep adding
new nodes in the middle. Consider the case when each time, we add a new
node, but each segment has the length L. Then we have:
(n = 2)

v1 v2

k =
2m

2L
π,m ∈ N

k2 =
(2m)2

(2L)2
π2,m ∈ N

(n = 3)

v1 v2v3

k =
2m

4L
π,m ∈ N

k2 =
(2m)2

(4L)2
π2,m ∈ N

(n = 4)

v1 v2v3 v4

k =
2m

6L
π,m ∈ N

k2 =
(2m)2

(6L)2
π2,m ∈ N
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(n = 5)

v1 v2v3 v4v5

k =
2m

8L
π,m ∈ N

k2 =
(2m)2

(8L)2
π2,m ∈ N

(n = 6)

v1 v2v3 v4v5 v6

k =
2m

10L
π,m ∈ N

k2 =
(2m)2

(10L)2
π2,m ∈ N

Observe that just like the cycle graphs, if the total lengths of the segments
are the same, namely, if the lengths of the total segments are all L, which means
each segment is L/(n− 1), then k and k2 will be the same for all the cases, and
they are exactly the ones for the single segment with two vertices at the ends,
or namely ,the 2-cycle. Again, this is precisely due to the Neumann-Kirchhoff
boundary conditions. When the boundary conditions hold at a vertex of degree
2, in this cases, at all the vertices, the vertex actually can be eliminated, hence
combining two adjacent edges into one smooth edge. The boundary conditions
exactly guarantee that the adjacent H2 pieces of the function match into a single
H2 function on the resulting longer edge: the continuity condition ensures the
natural continuity and the current conservation condition ensures the continuity
of the first derivative.

Moreover, we also notice that the line graphs and the cycle graphs are differ-
ent, as they have different eigenvalues. This is because the boundary conditions
on the line do not allow the ends to be identified to form a cycle, unless we
impose additional conditions on the endpoint vertices.

4.3 The Star Graphs

Since any arbitrary graph locally, i.e. near a vertex, looks like a star graph,
quantum star graphs are often studied in the literature. Consider a star graph
as below. We impose Neumann-Kirchhoff conditions at all vertices of the graph.
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v1

v2

v3

v4
v5

Taking the boundary conditions as given, we can rewrite the eigenvalue
function as: (

d2Ψe

dt2

)
= k2Ψe(t), k ∈ R

Consider the function Ψe on the edge e going from a peripheral to the central
vertex. At the peripheral vertex, we have the Neumann-Kirchhoff condition
Ψ′e(0) = 0. Together with the above equation, it implies that on the edge e the
eigenfunction Ψe must have the form Ψe(t) = Ae cos(kt). The outgoing deriva-
tive of Ψe(t) at the central vertex t = L(e) is equal to Ae sin(kL(e)). This means
that the two boundary conditions at the central vertex become:

{
A1 cos(kL1) = A2 cos(kL2) = ... = C∑E

b=1Abk sin(kLb) = 0

If we divide the second equation by C, we get that k2 is an eigenvalue if

F (k) =

E∑
b=1

tan(kLb) = 0

Notice that the case C = 0 requires a separate consideration which let us con-
clude that if a value of k is a pole for n out of E summands in F (k), then k2 is
an eigenvalue of multiplicity n-1. Particularly, if Lb’s are not rationally related,
then all eigenvalues of the star graph are simple and k2 is an eivenvalue if and
only if F (k) = 0.

v1v2 v3

v4

v5
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If we consider the case where all the edges have the same length L, we get
that either tan(kL) = 0 or cos(KL) = 0. So:

k =
2m

4L
π,m ∈ N

k2 =
(2m)2

(4L)2
π2,m ∈ N

which is the same as the spectrum of the 4-cycle, by coincidence.

5 Statistical Description of Spectra of Star Graphs

This section will elaborate on the theoretical result of the spectra of star
graphs in the previous section. Recall that k2 is an eivenvalue if and only if

F (k) =

E∑
b=1

tan(kLb) = 0

.
We consider the following different cases of the edge lengths for star graphs, and
obtain the spectra numerically in R by taking a look of the roots of F.

5.1 Star graphs with equal length edges

v1v2 v3

v4

v5

As we have seen in the previous section, if we consider the case where all the
edges have the same length L, we get that either tan(kL) = 0 or cos(kL) = 0.
So:

k =
2m

4L
π,m ∈ N

k2 =
(2m)2

(4L)2
π2,m ∈ N

.

In R, numerically, we get that for a four-edge star graph whose four edges all
have the same length L = 1, the graph of the function F (k) with respect to k is

19



as follows, which clearly has a periodicity that we have seen in the theoretical
solution.

Figure 1: F(k) of a four-edge star graph with equal-length edges

Figure 2: Spectrum statistics of a four-edge star graph with equal-length edges
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5.2 Star graphs whose edge lengths are rationally related

It is natural to ask what will happen if the edge lengths are rationally related.
That is to say, what will happen if the edge lengths are rationally related? Will
the spectrum of a star graph show some kinds of periodicity? Let us first
consider the four-edge star graph where Le1 = Le2 = Le4 = 1 and Le4 = 2.
Then we get the spectrum as follows:

Figure 3: F(k) of a four-edge star graph with edge lengths {1, 1, 1, 2}

Figure 4: Spectrum statistics of a four-edge star graph with edge lengths
{1, 1, 1, 2}

Then let us consider the case where Le1 = Le2 = 1, Le3 = Le4 = 2. The

21



spectrum is the following:

Figure 5: F(k) of a four-edge star graph with edge lengths {1, 1, 2, 2}

Figure 6: Spectrum statistics of a four-edge star graph with edge lengths
{1, 1, 2, 2}

Finally, consider the case where Le1 = 1, Le2 = Le3 = Le4 = 2
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Figure 7: F(k) of a four-edge star graph with edge lengths {1, 1, 2, 2}

Figure 8: Spectrum statistics of a four-edge star graph with edge lengths
{1, 1, 2, 2}

Note that in all cases, there is some kind of pattern, or periodicity in the
spectrum, though not quite as simple as in the case of graphs with all equal-
length edges.
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5.3 Star graphs whose edge lengths are not rationally re-
lated

After considering the cases where the edge lengths are rationally related,
then it is natural to ask what will happen if the edge lengths are not rationally
related. That is to say, what will happen if the edge lengths are irrationally
related? In section 4.3, we have shown that if the edges are not rationally re-
lated, then all eigenvalues of the star graph are simple. But what about the
periodicity of the spectrum of a star graph?

Let us first consider the four-edge star graph where Le1 = Le2 = Le4 = 1
and Le4 =

√
2. Then we get the spectrum as follows:

Figure 9: F(k) of a four-edge star graph with edge lengths {1, 1, 1,
√

2}
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Figure 10: Spectrum statistics of a four-edge star graph with edge lengths
{1, 1, 1,

√
2}

Then let us consider the case where Le1 = Le2 = 1, Le3 =
√

2, Le4 =
√

3.
The spectrum is the following:

Figure 11: F(k) of a four-edge star graph with edge lengths {1, 1,
√

2,
√

3}
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Figure 12: Spectrum statistics of a four-edge star graph with edge lengths
{1, 1,

√
2,
√

3}

Finally, consider the case where Le1 = 1, Le2 =
√

2, Le3 =
√

3, Le4 =
√

5

Figure 13: F(k) of a four-edge star graph with edge lengths {1,
√

2,
√

3,
√

5}
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Figure 14: Spectrum statistics of a four-edge star graph with edge lengths
{1,
√

2,
√

3,
√

5}

Notice that as the edges become less and less rationally related, the frequency
of eigenvalues increase and they are more and more aperiodic. It shows that
when the edges are not rationally related, we have a truly infinite spectrum for
a star graph.

6 Further Directions

This section will first discuss further directions of this project. Remember
that in the introduction, this project was motivated by the fact that in the
examples of the cycles, the infinite spectrum of the Laplacian operator on the
metric graph obtained by the scattering matrix approach will just be an infinite
copy of the spectrum of the corresponding combinatorial graph related in some
way, though not exactly the same. One special property about the cycle is that
its corresponding combinatorial graph could be seen as a Cayley graph with an
underlying group. Hence to understand this infinite multiplicity, We would like
to use ideas from representation theory and propose the idea of Cayley metric
graph, which combines the ideas of a Cayley graph and a metric graph. We
conjecture some properties of Cayley metric graphs as well.

6.1 Cayley Metric Graphs

Let G = (V, E) be a metric graph, and let G be its symmetric group.

Definition 6.1. A symmetry f of G is a homomorphism of |G| = ∪e∈E |e|, the
underlying metric space such that:
1. f maps vertices to vertices: f |V : V → V is a permutation of vertices.
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2. f maps edges to edges: f |ei : ei → ej, is smooth and perserve the Lebesgue
measure m on the intervals.

In other word, f is a graph isometry of the metric graph.

We would like to conjecture the following:

Proposition 6.1. G acts on the Hilbert space by an unitary representation that
commutes with the Laplacian.

Combining the notion of metric graph and Cayley graph, we introduce the
notion of Cayle metric graph. Namely, we embed the combinatorial graph into
the metric graph, where in this case, all the egdes have the same length L.

Let G0 be a Cayley graph, G be a metric graph such that G0 ↪→ G. Let L2(G)
be the L2 space on G, and L2(G0) be the L2 space on G0. Then we define the
two inner products respectively by:

〈f, g〉 =
∑
e∈E

∫ L

0

f̄gdm

,

〈f(v), g(v)〉 =
∑
v∈V

¯f(v)g(v) = 〈f, g〉0

.
Define a restriction map

R : L2(G)→ L2(G0)

f 7→ f |v

and the canonical extension (or inclusion, which is not unique)

Ek : L2(G0) ↪→ L2(G)

Let ∆ denote the subspace of the Laplacian. ∆0 denote the correponding sub-
space in L2(G0).

We would also like to conjecture the following two propositions:

Proposition 6.2. ∆0 ◦R = R ◦∆

Proposition 6.3. ∆ ◦ Ek = Ek ◦∆0

We are hoping to break up the unitary representation on the entire Hilbert
space to the unitary representation on the eigenspace of ∆, which are standard
for studying graph spectra.
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6.2 Some Research Questions

Here, I list some research questions related to this project that would be
interesting to continue studying.

1. How edge lengths affect the spectrum of a quantum graph? As we have seen
in the examples of star graphs whose edges are rationally related, where there
is some kind of periodicity. Does this periodicity has to do with the fact that
we can subdivide each edge into equal segments without changing the topology?

2. What will happen if the graph is a homogeneous graph?

3. What will happen if the graph is a Cayley metric graph?

4. Under what conditions Can we obtain the spectrum of a metric graph from
its corresponding combinatorial graph? Remember in the case where the edges
are not rationally related, we have shown that all the eigenvalues are simple. In
that case, we have a truly infinite spectrum, not an infinite copy of the spectrum
of the correponding combinatorial graph.
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